Bei Akkus wird immer sehr viel "philosophiert". Da poste ich lieber jetzt schon eine halbwegs vernünftige Quelle.
Hinweise zum Umgang mit Li-Ionen-Akkus [Bearbeiten]
Lithium-Ionen-Akku von VARTA
Viele der im Folgenden für den Umgang mit klassischen Li-Ionen-Akkus zu beachtenden Anwendungshinweise gelten für dessen aktuelle Weiterentwicklungen nur mehr eingeschränkt oder gar nicht.
Ladung
Die Ladespannung beträgt typischerweise 4,2 V. Da Li-Ion-Akkus keinen Memory-Effekt kennen und auch nicht formiert werden müssen, werden sie immer auf dieselbe Art geladen: Zuerst wird mit konstantem Strom geladen, der idealerweise zwischen 0,6 und 1 C liegen sollte. Die Abkürzung C steht hier für den auf die Kapazität bezogenen relativen Ladestrom[7] und ist nicht mit der Einheit Coulomb zu verwechseln; ein Ladestrom von 1 C bedeutet, dass ein Akku mit einer Kapazität von 2 Ah mit 2 A geladen wird. Erreicht der Akku eine Zellenspannung von 4,2 V, wird diese Spannung gehalten, bis der Ladestrom fast auf Null zurückgefallen ist. Die Ladung wird mit Erreichen von 3 % des Anfangsstroms beendet oder wenn der Ladestrom nicht mehr weiter absinkt. [5]. Die Ladeschlussspannung von produktabhängig 4,1 V bis 4,2 V muss mit weniger als 50 mV Toleranz eingehalten werden. Zwar gibt es Schnellladeelektroniken, die mit bis zu 2 C laden, jedoch wird die Verkürzung der Ladezeit durch Kapazitäts- und Lebensdauerverlust des Akkus erkauft. Liegt die Zellenspannung unterhalb der Tiefentladeschwelle, lädt die Ladeelektronik bis zum Erreichen der Mindestspannung zunächst nur mit geringer Stromstärke [1]. Neue Entwicklungen wie z. B. die SCiB erlauben auch ohne Einbußen an Lebensdauer erheblich höhere Ladeströme von über 10 C.
Entladung
Die Spannung des Li-Ion-Akkus sinkt während der Entladung kaum ab; erst kurz vor der vollständigen Entladung geht die Zellenspannung stark zurück [8]. Entladeschlussspannung ist 2,5 V; diese darf nicht unterschritten werden. Bei Entladung mit 0,2 C (das entspricht einem Entladestrom in Höhe von einem Fünftel des Nominalwerts der Nennkapazität) können typabhängig ca. 500 (Lithium-Cobalt) bis 4000 (Lithium-Eisenphosphat) Ladezyklen durchgeführt werden, bis die Kapazität des Akkus auf 80 % seiner Ursprungskapazität zurückgefallen ist. Bei Entladung mit höheren Stromstärken altert der Akku aufgrund der durch die höheren Ströme entstehenden thermischen Belastung erheblich schneller. Idealerweise sollte ein Li-Ion-Akku mit 0,2 C belastet werden, ein Akku mit einer Kapazität von 5000 mAh also mit maximal 1000 mA.[9]
Idealer Ladungszustand
Es ist empfehlenswert, Li-Ionen-Akkus „flach“ zu zyklen, wodurch sich deren Lebensdauer verlängert. Das Entladen unter 51 % sollte vermieden werden, da es bei „tiefen Zyklen“ zu größeren Kapazitätsverlusten aufgrund irreversibler Reaktionen in den Elektroden kommen kann. Der Akku altert schneller, je höher seine Zellenspannung ist, daher ist es zu vermeiden, einen Li-Ion-Akku ständig 100 % geladen zu halten.
Überladung
Bei einem Überladungsversuch wird der Akku durch seine Überwachungselektronik von den äußeren Kontakten getrennt, bis die zu hohe Spannung nicht mehr anliegt. Danach kann er meist ohne Probleme wieder verwendet werden. Nicht alle auf dem Markt erhältlichen Akkus enthalten eine solche Überwachungselektronik! Bei Überladung eines Li-Ion-Akkus lagert sich metallisches Lithium an der Anode ab. Das Kathodenmaterial wird zum oxidierenden Element und verliert seine Stabilität. Dadurch heizt sich der Akku auf und kann sogar in Brand geraten. [5]
Tiefentladung
Bei einer Tiefentladung schaltet eine interne Sicherung den Akku, meist nur temporär, ab. Es liegt dann an den externen Kontakten des Akkupacks überhaupt keine Spannung mehr an, d. h., er kann nicht noch weiter entladen werden. Manche Ladegeräte weigern sich einen derartig defekt anmutenden Akku wieder zu laden, da in diesem Fall an den externen Kontakten nur eine Spannung von 0 Volt messbar ist. Der Akku wird jedoch von seiner Schutzelektronik wieder an die Kontakte geschaltet, sobald eine äußere Spannung anliegt. In solchen Fällen kann es helfen, ein anderes Ladegerät zu verwenden. Wenn eine Zelle auf unter 1,5 V entladen wurde, sollte sie nicht mehr verwendet werden, denn mit hoher Wahrscheinlichkeit haben sich Brücken ausgebildet, die zu einem Kurzschluss führen. Die Zelle wird instabil und erhitzt sich stark. Es besteht Brandgefahr.
Ladegeräte
Herkömmliche Li-Ionen-Akkus dürfen nur mit einer speziellen Ladeschaltung geladen werden. Die Elektronik steuert den ladungsabhängigen Ladestrom und überwacht insbesondere die exakt einzuhaltende Ladeschlussspannung. Auch bei vorhandener interner Schutzschaltung sollte nur mit passenden Geräten geladen werden. Schnell-Ladegeräte sollten immer unter Aufsicht und möglichst nicht in der Nähe brennbarer Materialien benutzt werden.
Integrierte Elektronik
Li-Ion-Akkus reagieren sehr empfindlich auf falsche Behandlung, weshalb dieser Akkutyp lange Zeit nicht eingesetzt wurde, obwohl er bereits Anfang des 20. Jahrhunderts erfunden wurde. Integrierte Schaltkreise sind sehr preisgünstig geworden; daher können Li-Ion-Akkus heute in Verbindung mit einer Elektronik (BMS = Battery Management and Monitoring System) betrieben werden, was die Sicherheit im Umgang mit diesem Akkutyp erheblich erhöht hat. Bei Akku-Packs kleiner und mittlerer Baugröße ist diese Elektronik meist integriert; sie dient zum Schutz gegen Tiefentladung, Überladung und thermische Überlastung. Eine selbstrückstellende Sicherung verhindert Überstrom bzw. Kurzschluss. Die verwendete Prozessorsteuerung ist auf die Eigenschaften des jeweiligen Akkutyps abgestimmt. Akku-Packs, in denen zur Spannungserhöhung mehrere Zellen in Reihe geschaltet werden, verfügen oft auch über eine Elektronik, die durch sog. "Cell-Balancing" Ladung und Entladung für jede einzelne Zelle individuell regelt. [10] [11]
Betriebs- und Umgebungstemperatur
Da bei Kälte die chemischen Prozesse (auch die Zersetzung des Akkus bei der Alterung) langsamer ablaufen und die Viskosität der in Li-Zellen verwendeten Elektrolyte stark zunimmt, erhöht sich auch beim Lithium-Ionen-Akku bei Kälte der Innenwiderstand, womit die abgebbare Leistung sinkt. Zudem können die verwendeten Elektrolyte bei Temperaturen um −25 °C einfrieren. Manche Hersteller geben den Arbeitsbereich mit 0–40 °C an. Optimal sind 18–25 °C. Unter 10 °C kann durch den erhöhten Innenwiderstand die Leistung so stark nachlassen, dass sie nicht lange für den Betrieb eines Camcorders oder einer Digitalkamera ausreicht. Es gibt aber Li-Ionen-Akkus mit speziellen Elektrolyten, die bis −54 °C eingesetzt werden können.
Lagerung
Der Ladezustand soll 40–60 % betragen, kühle Lagerung ist vorteilhaft. Die Elektrolyte in der Zelle dürfen nicht gefrieren, was einer Mindesttemperatur um −25 °C entspricht. Hersteller empfehlen eine Lagerung bei 15 °C bei einem Ladestand von 60 % – ein Kompromiss zwischen beschleunigter Alterung und Selbstentladung. Andere Quellen empfehlen dagegen 40 % Ladestand und möglichst niedrige Temperatur, also z. B. Kühl- oder Gefrierschrank.[12] Ein Akku sollte etwa alle sechs Monate auf 40–60 % nachgeladen werden. Zur Zeit gilt die Faustregel, dass ein Li-Ionen-Akku nach ca. drei Jahren mehr als 50 % seiner Kapazität eingebüßt hat. Lithium-Ionen-Akkumulatoren dürfen sich auch bei Lagerung nicht unter 2,5 V pro Zelle entladen.